Wednesday, March 30, 2011

Patterns in Pascal's Triangle

Today we got all the way to row 14. The very first row, the point of the triangle that only has one number, is row zero.


1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 300 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 186 715 1287 1716 1716 1287 715 186 78 13 1

1 14 91 264 901 2002 3003 3432 3003 2002 901 264 91 14 1


We expanded on some of the patterns from yesterday and found new patterns. I was very impressed with the pattern-finding. Here are some of the patterns.


The numbers in the second diagonal go up by 1 each time:


1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1


The numbers in the next diagonal go up by 2, then 3, then 4, then 5, etc.


1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1


The numbers in the next diagonal go up by 3, then 6, then 10, then 15, etc.:


1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1


The numbers in row 7, except for the outer 1's, are all multiples of 7. I added that this is true for any prime number row: all the numbers in that row, except the outer 1's, will be multiples of the prime.


1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 300 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 186 715 1287 1716 1716 1287 715 186 78 13 1

1 14 91 264 901 2002 3003 3432 3003 2002 901 264 91 14 1



Row 0 has 1 number, the next row has 2 numbers, the next row has 3 numbers, etc.:


1 - 1 number

1 1 - 2 numbers

1 2 1 - 3 numbers

1 3 3 1 - 4 numbers


Only even-number rows have a middle number (this is because we can split an even number in half, but we can't split an odd number in half).


In even-number rows the "choose 2" number is a multiple of half the row number. In row 4 the number 4C2=6 is a multiple of 2, in row 6 the number 6C2=15 is a multiple of 3, in row 8 the number 8C2=28 is a multiple of 4, etc:


1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 300 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 186 715 1287 1716 1716 1287 715 186 78 13 1

1 14 91 264 901 2002 3003 3432 3003 2002 901 264 91 14 1



The other numbers in that diagonal, on the odd-number rows, are special for a different reason:

3*1=3

5*2=10

7*3=21

9*4=36

etc.



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 300 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 186 715 1287 1716 1716 1287 715 186 78 13 1

1 14 91 264 901 2002 3003 3432 3003 2002 901 264 91 14 1

No comments:

Post a Comment