The first week in October, we did clock arithmetic. On a clock, if you count up to twelve you get back to the beginning, so 12 is basically the same thing as zero. Weird things happen in clock arithmetic. For example, it's possible to multiply two non-zero numbers (2 and 6, for example) and get zero. This doesn't happen with regular integers and real numbers!
The last couple of weeks we've been doing "magic tricks" with a compass and straightedge. We cut a line segment in half without even knowing how long it was, and we cut an angle in half without knowing the measure of the angle. These magic tricks are done in high school geometry. Magic trick 3, however, usually isn't done in school at all: while it's provably impossible to cut an angle into thirds using only a compass and straightedge, it can be done with origami paper!
Today we did some set theory. We created all whole numbers using only the symbols {, }, and a comma. Here's how:
0={} is the empty set
1={{}}
2={{},{{}}}
3={{},{{}},{{},{{}}}}
and so on. Since it's hard to make sense out of all those brackets, we can write the numbers they represent instead. Then we get something prettier:
0={}
1={0}
2={0,1}
3={0,1,2}
and so on, and so on...